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Duringthe periodof this grant (12/01/94-1/31/99),the PI hasstudiednonmagneticstability,
waves,and tidal forcingin disksand stars. The CoI hasstudiedmechanismsfor fast magnetic
reconnection.

Parametric tidal instabilities in disks

An important theme of the PI's work under this grant has been applications of parametric insta-

bility.
The simplest example of parametric instability is a harmonic oscillator with a periodic modu-

lation of the spring constant. If the modulation frequency is close to twice the natural frequency

of the oscillator, the amplitude of oscillation tends to grow exponentially ([1]). The growth rate is

proportional to the strength of the modulation, but it also depends upon the closeness to resonance

of the two frequencies, and upon natural damping rate or "Q" of the oscillator. Parametric insta-

bilities are very common in physics. A familiar example is a jogger's ponytail--normally a very

strongly damped pendulum, it can be destabilized by the variation in effective gravity during the

jogger's stride. Observation confirms that the period of the pendulum is half that of the jogger's

vertical motion. In astrophysics, parametric instability may occur by external tidal forcing, or by

interaction among eigenmodes. In the latter case, an energetic eigenmode may destabilize modes

of half its frequency, provided some weak nonlinearity exists to couple them.

Under a previous Astrophysical Theory grant (NAGW-2419), the PI discovered a parametric

instability of tidally forced disks such as the accretion disks in cataclysmic variables and Xray

binaries [2]. The destabilized modes are tightly-wound, incompressible, three-dimensional waves

analogous to g-modes and r-modes in stars. Later work has confirmed our analysis [4]. It was

hoped that these modes might provide a source of turbulence and angular momentum transport in
accretion disks. However, a follow-up investigation of this instability by local numerical simulations,

although confirming the analytically estimated growth rates, found negligible angular momentum

flux [3]. Other work, partly supported by the ATP, now strongly indicates that the transport

mechanism in such disks is magnetohydrodynamic turbulence [6]. Nevertheless, the parametric

mechanism may truncate the outer edges of disks in close binaries [2], and it may be important

in disks of very low ionization such as protostellar disks, or even cataclysmic-variable disks in

quiescence where the MHD mechanism may be ineffective [5].

All analyses up to 1996 were done in a local approximation where the orbital frequency, shear

rate, and tidal field were treated as constants. The locally computed growth rate turns out to

depend strongly on radius, and it was unclear how to average these local rates to obtain the correct

global rate. This is a critical issue for accretion disks in close binaries, because the local growth

rate is comparable to the orbital frequency towards the outer edge of the disk but decreases rapidly

inwards. Paper #1 examined this issue in a simplified global model where the destabilizing terms

vary with position. We found that the global growth rate is essentially equal to the maximum

local rate, provided that the latter is smoothed over a radial range equal to the distance that

the destabilized wave propagates at its group speed in one growth time. Thus, in an accretion

disk, waves would grow rapidly in the outer parts but would propagate both inwards and outwards

at a maximum group speed of order the disk thickness divided by the orbital period. It can

be shown that these waves carry negative angular momentum. Thus the ingoing waves carry a

positive angular momentum flux, but in a purely local approximation, this is exactly balanced by

the negative angular momentum flux of the outgoing waves. In a disk, the ingoing waves would

dominate at small radii because they would be excited farther out, and the net angular momentum
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flux wouldbe outward. It is not clear, however, how far the ingoing waves can propagate before

damping through nonlinear interactions. Unfortunately, because of the short wavelength and three

dimensional nature of these waves, global nonlinear numerical simulations will probably remain out

of reach for several years to come.

Tidal dissipation in stars

The discovery of parametric tidal instabilities in disks naturally led us to ask whether a similar

mechanism might not operate within the interiors of detached close binary stars. The strongest

tidal forces occur in contact binaries. But these systems are expected to have circular orbits and

synchronous spins; the tide is steady in a corotating frame and therefore cannot be resonant with

any stellar mode of finite frequency.

Tidal capture, whereby a near-grazing encounter between two single stars results in a bound

system [7], makes extremely eccentric and nonsynchronous binaries. Tidal capture between neutron
stars and main-sequence stars, probably in the course of three-star interactions, may account for

the superabundance of low-mass Xray binaries (LMXBs) in globular clusters [10]. By the time

they are seen as LMXBs, the tidal-capture systems have circularized and synchronized, and it is

important to understand how this comes about. The initial encounter, at a pericentral separation

less than 3 stellar radii, tidally excites upwards of 1044 ergs in a few global oscillation modes of the

nondegenerate star. If this energy is not rapidly dissipated, it may return to the orbit and unbind

the system [8, 9], or else more distant encounters may torque the orbit and increase the pericenter.

(The initial orbital period is hundreds or thousands of years.) But if the dissipation is too rapid

and occurs mainly in the outer parts of the star, then tile star will swell up, resulting in a physical

collision at a subsequent pericentral passage [11, 12].

Paper #2 examined parametric instability in the context of tidal capture. Initially, most of the

energy is deposited into a few large-scale quadrupolar modes of oscillation, because only these couple

directly to the tidal potential. But these modes are weakly nonlinear, and the three-mode coupling

between a large-scale mode and parametrically resonant pairs of small-scale modes is significant.

By explicitly evaluating these couplings, we estimated that the large-scale modes should damp in

,-_ 4E441/2 days by transfer of energy to large numbers of short-wavelength, high-order g-modes.

(Note that this process is negligible for the five-minute oscillations of the Sun, where the average

energy per mode is only --_ 102s erg.) This is much shorter than the initial binary orbital period and

the conventional linear damping time. Furthermore, although the dissipation rate of the large-scale

modes exceeds the luminosity of the star by orders of magnitude, the star may not swell up, because

the high-order g-modes reside in the radiative core, whose total thermal energy is large (_ 104s erg)

compared to the tidal increment. Thus, parametric instability is probably an important component

of the tidal-capture mechanism.

There is a long-standing problem with the circularization of normal binaries (i.e., not formed

by tidal capture or other exotic processes) in which both components lie on the main-sequence.
Since the transition between circularized and eccentric orbits appears to occur at longer binary

periods (larger stellar separations) for older binaries, circularization probably occurs by gradual

dissipation of the nonstationary tide during the main-sequence lifetime [13]. The standard mecha-

nism for dissipation is turbulent viscosity in stellar convection zones [14]. Paper #3 re-examined

this mechanism for binaries consisting of two solar-type stars. Our best estimate is that turbulent

viscosity does not circularize such binaries during their main-sequence lifetime beyond a period of



about3 days;with veryconservativeassumptions,thiscouldbeextendedto 6days.Thedifference
betweenour "best" and "conservative"assumptionsis the degreeto whichturbulentdissipationis
suppressedwhenthe tidal periodis shorterthan the typical turnovertime for convectiveeddies.
Calculationsin Paper#3 indicatestrongsuppression,supportingearlierclaims[15].

Observationally,however,PopulationII main-sequencebinariescircularizeout to periodsof
at least11days,and possiblyas long as 19days (see[16]and Paper#3). Becausethe time
requiredfor circularizationis predictedto bea strongfunctionof binaryperiod ((xp16/3), this is a

serious conflict between observation and theory, and it suggests that the dominant tidal dissipation

mechanism has not yet been identified. This has implications for other types of close binaries, for

example extrasolar planets [17].

Paper _4 explores an alternative circularization process: excitation of g-modes at the inter-
face between the radiative core and the convection zone. This mechanism is well known but had

been applied only to early-type stars ([18]). We found that the g-mode process is competitive

with turbulent convection for solar-type binaries. Apparently this is a coincidence, since the two

mechanisms scale differently with orbital period. There are some subtleties involving the damping

of these high-order g-modes within the core (nonlinearities may be important) and the evolution of

the g-mode eigenfrequencies during the main sequence lifetime. Despite these theoretical uncertain-

ties, an upper bound can be placed on the circularization rate by this mechanism. Unfortunately,

even in combination, turbulent convective viscosity and g-mode excitation are unable to explain

the observations cited above unless circularization occurs prior to the main sequence. (The latter

possibility cannot yet be ruled out, but the observational evidence is against it.) An independent

group has recently reached similar conclusions [19].

The PI and Princeton graduate student Michael Blanton spent considerable effort studying

whether parametric instabilities could be responsible for circularization. In order to predict the

secular effect of these (or any other) instabilities, it is necessary to understand how they saturate.

This is an intrinsically nonlinear question, and we attempted to address it by three-dimensional

numerical simulations using a fourier-based spectral code. We found that sufficiently strong tides

can indeed give rise to a statistically steady, weakly nonlinear cascade of g modes. We have

estimated, however, that the linear parametric instability will be suppressed by radiative diffusion

at tidal periods longer than about three days. This work has not been published.

Self-gravitating disks.

During calendar 1998, the PI returned to problems involving the stability of gaseous disks, this

time with self-gravity.

Paper #5 studies nonlinear spiral density waves in weakly selfgravitating disks where the po-

tential is dominated by a central mass. There are two natural astrophysical contexts: protostellar

disks, and molecular disks around supermassive black holes in galactic nuclei. Because the potential

is nearly keplerian, the single-armed spirals have very special dynamics and may be able to prop-

agate over large radial distances with much less dissipation than spirals of any other multiplicity.

By variational methods, we derive nonlinear versions of the dispersion relation, angular momentum

flux, and propagation velocity in the tight-winding limit. The pitch angle increases with amplitude

until the tight-winding approximation breaks down. By other methods, we find a series of nonlinear

logarithmic spirals which is exact in the limit of small disk mass and which extends to large pitch

angle. This paper has been submitted to MNRAS and has received a favorable referee's report.



Paper#6 is arather formalstudyof the linearstability of diskswith power-lawsurfacedensity
profiles. Althoughhighly idealized,suchdiskscanbe useful"test beds"for theoreticalstudies,
andonewouldthink that their stabilitypropertiesshouldbeeasilycharacterized.Sincepower-law
diskshavenopreferredlengthor time scale,however,therehasbeenconfusionin the literature
whethersuchdiskshavea continuumof unstablelinearmodesor perhapsnounstablemodesat
all. Paper#6 resolvesthis paradoxby analysingthe particularcaseof a gaseous,isentropicdisk
with a completelyflat rotation curve(theMesteldisk)exactly.It turnsout that the linearstability
problemis ill-posed. Instabilitiesexist, but their patternspeedsdependuponan undetermined
phasewith whichwavesarereflectedfromtheorigin. Foranydefinitechoiceof this phase,thereis
an infinitebut discretesetof growingmodes.Thecomplexeigenfrequenciesfall at the intersections
of a logarithmicspiralwith a radialray in the complexfrequencyplane. The pitch angleof the
spiralandthepositionof the rayareindependentof thecentralphase;theydependupontheratio
of soundspeedto circularvelocityin the disk, the degreeof selfgravity,and the multiplicity of
the arms.But the orientationof thespiral,and hencethe locationsof the eigenfrequenciesalong
the fixed ray,vary with the choiceof centralphase. Exact, closed-formresultsareobtainedfor
nonself-gravitatingnormalmodesand is shownto agreewith approximateresultsobtainedfrom
the shearingsheetin the short-wavelengthlimit. This provides the first exact, analytically solved

stability analysis for a differentially rotating disk. For self-gravitating normal modes, numerical

results are obtained by solving recurrence relations in Mellin-transform space. This paper has been

submitted to MNRAS and received a favorable referees report.

Paper# 7, a more phenomenological paper, attempts to explain the young massive stars seen in

the inner 0.1 parsec of the Galaxy as the result of gravitational instabilities in a compact gaseous

disk. (Like Paper# 5, this will form part of Princeton graduate student Erick Lee's Ph.D. dis-

sertation, completed under the PI's advice and supervision.) The evidence for a black hole in the

Galactic Center with a mass _ 2.5 × 106MQ is now overwhelming [20, 21]. Because of the extremely

strong tidal fields due to this black hole, conventional star formation seems difficult [22]. Paper# 7

demonstrates, however, that formation from a disk is possible in this environment and naturally

explains some of the salient observed characteristics of this young stellar population: in particular_

its inferred total mass and its retrograde rotation. This paper has gone through several drafts and

will probably be submitted to MNRAS within a week or two of this writing.

Magnetic reconnection

A systematic investigation of magnetic reconnection was pursued under this grant by the CoI

and his collaborators.

In Paper #8, magnetic reconnection was treated by a combination of global and local techniques.

The global approach showed that the geometry of the magnetic reconnection layer and the separatrix

layer separating the reconnected and unreconnected regions is determined globally independent of

the physics in the reconnection layer. It was also shown that in the limit of infinite magnetic

Reynold's number the plasma flows from the reconnection layer into the separatrix layer through

a Y structure rather than through an X structure [Paper #11].

In addition, the global solution also determined the proper boundary conditions to apply to the

reconnection layer, an asymptotic boundary layer analysis of the reconnection layer, [#13,#15]

led to a unique reconnection rate. If one attempts a Petschek structure for a faster rate inside

the layer one finds that this immediately reverts back to the unique structure which is close to

that proposed by Sweet and Parker. The reason for the failure of the Petschek model (under the



assumptionof constantresistivityMHD wasuncovered[#12,#15]. It wasfurther foundthat inside
thereconnectionlayeritself theosculatingsolutionproposedbyCowlingandPriestwasnot unique
andgenerallydoesnotoccur[#14].

In the the magneticreconnectionexperimentcarriedout at the PrincetonPlasmaPhysics
Laboratory,the MRX theplasmaresistivitywasmeasuredandwasfoundto be muchlargerthan
thepredictedSpitzerresistivity [#11]. This is believedto bedueto a lowerhybrid instability i. e.
andion acousticinstability abovethe ion cyclotronfrequency.Thethicknessof the reconnection
layerwasmeasuredandfoundto beconsistentwith the marginalconditionfor this instability. The
electroniondrift velocitywasfoundto alwaysbeaboutafactorthreetimestheion acousticspeed
thevaluefor onsetofthis instability. If onemakesthesameassumption,that thereconnectionlayer
thicknessissuchthat oneisat themarginallimit in solarflaresandappliesthe SweetParkermodel,
thenoneobtainsareconnectiontimethat is nearlyin the rangeobservedin solarflares[#12]. The
possibilityalsoexiststhat suchananomalousresistivitywouldbespacedependentwhichwould
reestablishtheevenfasterPetschekmechanismandclosethegapbetweensolarobservationsand
theory [#15].

An analysisof the reconnectionexperimentapplyingthelargermeasuredanomalousresistivity
showsthat theexperimentalrateisconsistentwith theSweetParkerrateforavarietyofexperiments
[#11].

Use of funds

Mostof theexpenditureshavesupportedthetuition andstipendof graduatestudents.Students
whocollaboratedwith the PI andweresupportedfrom this grantSiangPengOh,AriellePhillips,
SergeDobrovolsky,LeonidMalyshkin,andBart Pindor (the latter twoarecontinuingtheir collab-
orationwith the PI with other funds). Studentswhocollaboratedwith the CoI includeVictoria
DormanandAlexanderSchekochihin.

Fundswerealso usedin partial supportof summersalary for the PI and CoI, travel to a
small numberof conferences,computersupport, publicationcosts,and minor expensessuchas
photocopyingandmailing.
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